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ABSTRACT

This paper reviews exact results which we obtained on the discrete
(..

Frenkel Kontorova (FK) model and its extensions, during the past few

years. These models are associated with area preserving twist maps of

the cylinder (or a part of it) onto itself. The theorems obtained for

the FK model thus yields new theorems for the twist maps. We describe

the exact structure of the ground-states which are either commensurate

or incommensurate and assert the existence of elementary discommensura-

t~.onsunder certain necessary and sufficient conditions. Necessary

conditions for the trajectories to represent metastable configurations,

which can be chaotic, are given. The existence of ,9finite Peierl

Nabarro barrier for elementary discommensur?,tions is connected with a

property nf non-integrability of the twist map. We next rrove that

the existence of KAN tori corresponds to undefectible incommensurate

ground-st~tes and give a theorem which asscrt~ Lhat when the phonon

sp~~ctrumof finint.ommcnsur~tc ground-state exhibits a finite gap, then

the corresponding tra.jrctory is drIIsron a Ci]rltorset with zrro measure

lrngth. Thrse theorems, ~~t~rr.i]p])lirdto tlIcinitial FK model, H11OWS

one to prove the vxistrllcr of LIICtri]nsition by “hrrnkiljg of annlytiuiLy”

[or the il)roll)m(~[’~l]r~ltostrll(turrswhen thr I)ornmctcr whi(h doficribes tl]c

disc;f’])tillcy(1[”111(’nlodvl to L]IV il~lrgr:ll)]olimit VJ~lCN. ThrHr throrcms

01s0 ul]ows ollcLo cl~tllinu srrifq~of rigol’ousI)])l)rrl)ol]I)dsfor thr

~tochnstirity tl)rrp!loldof Lhr still)’li]~dmnp wll~ch for Lho order 5,

alrrody n])yr.?~lchrsIIti!s’~tlIrvn]ur wllirh i~ Illlmrrirnllykl)own. l:iuully,

wr clr~cril:rIIIhvolrm provlIIg tlIc(*xiNtcIIrPof N drvi]’~ ~tnil(-n~c for

the vnrint Ion (.urvr01 ttlrJJtIMHi(’nw~lllcli~t;lll(’cvrrRIIH u lhvmicnl poLrlI-

linl, for (~~rtlllll])1’\I]}rIli(*N01’:IirtwItilm:Ipwtiirhnrr ~($l)ornlly

RntiMflml,



I. Introducti\m. Models description— ——

Up to now, applications of the properties of nol]integr?ble maps

and particularly the possibility that they have to exhibit a chaotic

behavior, have been mostly devoted to physical systems which are really

dynamical. !lowever, they also have interesting applications for under-

standing static structural properties of condensed matter. The aim of.—

this paper is to describe some of these applications. Instead to give

a detailed report of our talk (which would be too long), we mostly focus

on the ri~orous results which we obtained. The reader can refer to
(16)

where the physical applications of this work have been focused at the

expenses of a precise mathematical description which as a counterpart. is

(2) (noted here-

given hfire.

We initially studied the Frenkel Kontorova model

after FK model). However, due to difficulties in the publication of

these early works, these results have only been published in parts and

with incomplete proofs in jol]rnal~ of limiLed audience, We take the

ol)portunity of Lhis paper to recall, LO clarify and to eml)l)asizesome

particular imporLnnt points which apparently havr been ignored or mis-

Il[ldrrsloodin Lhc litrraLurt?, hllLwhich alrrady ~ave answers to certain

l)rr:;rntlyron(rovrrsed questic)rrs(T’~rvxnmp]o on the rxistellce of chao-

lir groul)d stntes illLllti FK m(]drl). Tl)rcxiIcL results whicilwc oht:]illrd

0[)iL~ gr~~lll~d-Rt,lLrsand 01] its m~L;ls[ill)]~stntes, tilso(urned OUL 10

hirvr iml)orLnnl i)])])li(’;~tiolisfor thr st;ludnrd map. Wr rrrrnt]y improved

:111(1(’xtI’:IIl(s(l(I)rs(’rrsllll!+L()N l;lr~(’r(“lnssof mo(lrls rorrcspon(ling to

twi~t III;Il)SHIId I“orwl)icllw(*ol)t:lillr(lilltrrrstiilgIIrWtllrorcms. In this

l~al)rr,wr {1(’s~’rll]rtllrrnil)lllcmost t’r(.rllt]yIml)rovr(!form, hut wr do

Ilot il)(ll)(lrthril ])1’()()fswlIi(’11;)1’(’~(’l]rrnllyloIIgJIII(I(Iom])]iuatr(!,
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However, we detail some corollaries which have immediate applications

with their pr~ s when they are simple. The first parts of~the most
. .-

important proofs .re submitted to publication (Ref. 6 and 7). The

second part (Ref. 8) is still in preparation.

This study is essentially analytical and yields only qualitative

results of topological nature. However, explicit rigorous calculations

can be carried out on a particular but pathological model with the

form (1) where V(x) is replaced by a piecewise parabola periodic poteri-

tia1(2,3,7)
We also performed few numerical calculations mostly for

the illustration of the theory (Fig. 1 and 4). Some recent numerical

calculations have also been performed on the transition by breaking

of analyticity in order to explicit critical quantities and critical

exponents.

Le: us describe now, the Frenkel Kontorova
(1)

model, in its

original version, IL corresponds to a chain of elastically coupled

aLoms suhmittrd ~t)a periodic potenLial

$[{U1)) = 2[A V(ui)+W(ui+l-ui) - P“(ui+l-ui)]
i

(la)

tl]eatom i is at nhsrissti u,, The roul~]ing poLenLio] W is IliIrmun]r
1

W(ui+,-Ui) ❑ Jui+,-ui)z (1,1))

(The ell(’rgyuuil is (-lIOSrIISIIC’11tl)atttlrcOIII)lil)g(.t)nstantin [1,h) Ijr

Ollr). TIIrI}rriotli(’J)otrllLinlV will] Ilc’rio(l20 is sil~llsoidal.

nu
V(lli) = ;(lWON :) (1.(’)

A thr ~lmplitll(lcot’this potrlltiillis al)a(ljllstill)lr]);lr~lmrtrr.TIIIS(ll:lill
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is submitted to a tensile force p (or a chemical potential) which allows

one to change the distance between neighboring atoms in the<absence of
s-

periodic potential (A=O). The configurations {ui] of model (1) which

have the most physical interest are those which corresponds to the

ground-states for various boundary conditions or with free ends and

those which corresponds to metastable configurations. All these con-

figurations are solutions of the equation

*
ml.

au = (-ui+l-ui-l+2ui) +2 sin+= O
i

(2)

but this equation also exhibits many other unphysical solutions (in our

physical context) whi.c’lcorrespond to unstable configurations, (Note

that the parameter p disappears when writing equation(2)).

This equation can he recursively solved
(2)

by iterating the area

preserving two dimensional map ~~ which maps the point ~i with coor-

dinates (u.,ui-l) onto the point ~i+l with coordinates (Ui,l,Ui). t’rom
1

cq!]ation (2), we get

ll]ismap can be fold up onto A torus [0,2a[x[0,2a[ by defining

= \l
‘i i

mi)dulo 2a

(3)

(4)

Jt in now wrll-kn!jwn ttlu~such a miiprxhihits mony kindR of trajectories

~llirh O:C rj~hcr cllao~icor not, Figures 1 shows some trajectories for

A = 0.]5 (Fig. l-a), A= 0.20 (Fig. l-h) and A = 0.25 (Fig. l-c). About

1000 itrrnlrd pt)illtshtivrI;ccl)plottrcl from ~ach init~a] poil~t. These

figurc15rxhil)ii trhjerLorirB whiri] arc Cithrr rotating On one or several
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smooth closed curves or are chaotic. The behavior of two dimensional

area-preserving maps has been intensively studied particularly during
,.

the past few years and we refer for example to the important work of

Greene(g) on this subject.

By the change of variables

Pi = u. - u.
1+1 1

(5)

this map become? the well-known standard map which have been studied as

a model for certain dynamical systems (for example the motion of an ion

in a plasma)

nfi.
‘Pi+~,6i+~) = Ts(pi,ei)= (pi+ ~ sir,-J > Pi+l+ei)a

(6)

This standard

prototype for

map, which maps the cylinder [0,2a[ onto itself, is a

the twist maps of the annulus onto itself (see Ref. 5)

A twist map is a map ~i+l = ~(~i) of the annulus onto

is defined as the part of the cylinder (p,6) whj.ch is

circular sections p = p- and p = p,) which satis~ics

where

1) TI and T2 are differentiable in p Ji~d6 with

(Icrivatives. ? is ilr~aprrsct-ving an(linvertible,

2) T] ond T2 havr pvx-iud 2n wilh respect to tht!

itself (An annulus

limitrd by two

(7)

continuous

variable 0,

3) l’orany lix~~dvalue of 0, T2(p,Q) i~ a strictly monotonous

I_ul)clion of p,
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4) The two boundaries of the annulus are invariant by ? which

preserves their orientation. .-
.-

This standard map ~~ in (6) allows one to represent any stationary

also

configuration of model (1) modulo 2a (which can be either physically

stable or unstable) by a trajectory in the dynamical system with the

discrete time i and the evolution operator ~s. But let us emphasize

again, that our specific problem is not to find the properties of

arbitrary trajectories, but to find those which corresponds to physically

stable configuration. Let us also emphasize that the physical stability

of a configuration must not be confused with the stability in the map of

the associated trajectory.

Although our theory was initially developed for a slightly general-

ized form of model (l), we recently found that tilemethod which we used,

can be extended with few changes to a wider class of one dimensional

models with first neighbor interactions. The map associated with these

models by extremalizing their energy, turns out to include the class of

twist maps above defined in (7) but our map ?’is not necessarily

restricted to an annulus. The energy of this class of model (or varia-

tional form) which contains model (1) as a particular case is

$({uil) = Z L(ui+l,ui)
i

(8a)

where L(x,y) is an arbitrary function of the two variables x and y

which have the following ‘,~roperties:

1) L(x,y) is continuous with a lower bound;

2) L(x,y) is di~gonally periodic with period 2a that is <or any x

an~ y



L(x+2a,y+2a) = L(x,y) (8.b)

3) the crossed second derivative of L(x,y) is strictly;negative

that is there exists a ?ositive constant C such that for any x and y

-&(x,y)>c>o (8.C)

By setting p. = ~L(ui,ui-l )/~ui, the conjugate variable of u. the
1 1’

equation ~$/~ui = O generates an area preserving map (pi+l,ei+,) =

~(pi,8i) with the same properties as the twist map (7) except that it

maps the cylinder (or a part of it) onto itself and not necessarily an

annulus onto itself.

Our theory(6) Introduces a distinction between the concept of

minimLlinenergy configuration (me, configuration) and the concept of

grour.d-states. The reascn for this distinction is that under certain

bcundary conditions, for (Ix:lmplethe constraint

lim
‘N-UN” = 2a

(lo)
N-N ‘KU

the rollfiguration of Il)[Jdel(1) wtliuh salisfies Lhis condition and which

have Lhr minimum cllcrgy is in fact a drfect (a soliLon in t!lecontinuous

limit) and is not I,sually collsiderrd as a grouIld-sL~te. The set of’

mil]imun]t~llt~rgycf)llfigll]”:lliollsis [1(’l”inrdas Illrset Of illlpossible

limits of grourltl-statesof fioile sysl.emswill) ilrl)itl-~ryI)oulldi]rycor]-

{Jition at u
N

and 11 .
N

w] I(’11 N ~OVS to +01aIIdN’ ~0(’SCO ‘~. Tl]is set 01’

me. [’(J[lfigllr:itioIls
Q

is CA,I Ir(i . W(’k(’[’ptlIr11:111](1glollrl(l-slle Ior m,r.

cor~figllratior~swl~irh ;]rc’ro}]r(,sprltr~]I)y r(~t.l]rerilLrdjeclorics in LIIC

;Jss[)[’iillf,(lm:ip, (A re(urrrll Lri]jrcLory r(’ttlrllsinto arlyrl(’igl)l~(]]”lloc)(l

of any point of LII(*trajrrlory), Tl)is(l[’flrlil.iorlillrrls(I1lLto C(]rrrsl)urld
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to the usual intuition of a ground-state (see Ref. 6 for more details),

This set is called
3

and is included inQ. ;
,-

5
We found the topological structure of the sets ~and without any

explicit calculation of m. ‘. configuration. These results are described

in the following section 2. Before the description of these results

let us briefly explain the general ideas which allows one to find a

method ~~hichworks when some topological Znd symmetry properti~>s are

satisfied.

1) Wenotethat thesetQ isclosed iorthe~e,kt opolog>th atis, the

limit of a convergent sequences of me. configurations is a me. con-

figuration. This property is only a consequence of the fact that the

energy of the model depends continuously on the atomic positions.

2) We note the existence of a group of transformation G- which trans-

forms a configuration into other configurations with the same energy.

Particularly (land
$

are invariant by G“. This group G’ is defined by

the t-ransfl~rmationsg wl!”.h transforms a configur~tion {ui] into:
n~p

%n p({ui)) = {ui+n-2paj
9

(12)

n and p are two arbitrary integers. This property is a consequence of

the honlogrncity of the model (all the atoms play an identical role) and

of the periodiciLy cnndiLion (10.h).

3) Con{lition (10.C) allows to llroVe the fur]d~merltallemma which is:

P
F\lndamcntal l(~mma Let {Ui) and {vi) be two me. co~lfigurations.—

Lllcnthr s(’qurncr (Ui-Vi) has al most one node for -~< i < m (i.e.

OIIr~ha[lgeof sign), If the lwo ~Illlfigurations{ui) and {vi] are

:]symplotic for i + @ , llIcpoill~al illfilliLyMUSL he ronsider~rl as a
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Considering a me. configuration {unj, the group G- allows one to

construct an infinite number of me. configurations from which the limits
,.

are also me. configuration. These me. configurations can be compared

one with eack other with the above fundamental lemma which yields in-

equalities. By com5ining these methods in a sequence of proofs which

is quite Song and complicated,
(6)

one finds the exact topologic~ struc-

tureof the set Qand now described.
9

2. Topological Structure of the set of me. configurations and of.—.

groucd-state in the extended FK model (proofs in Ref. 6.b).——.

We first found

Theorem 1. For any me. configuration inQ, the limit (II) is defi;.led——

and does not depend on the way by which (N-N-) goes to infinity.

I {Ui]

L

Conversely, for any value of J?,there exists a me. configuration

in Qsuch that the limit (II) be i?.

The corresponding trajectory in the twist map have the winding

i
number — which is its mean number of revolutions around the cylinder

2a

per iteration of the map. Because of this theorem, we can split the

5 Y
set~(and ) into subsets Qfl (and ~) which are defined as the con-

figurations in Q(and )withwinding number }aand such that:
9

(13)

(14)

The two following Lhrorrms describe the structurp of~fl arld~g, first for
i

.12 J1
j–aan irrational lllmll]rrand [lext for .— a rational,number.

2a
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Theorem 2. Let ~ be an irrational number then:

1) The setQfl of me. configurations of the above defined extended
.-

TK models, is non-void and is totally ordered that is if {ui} # {vi)

both belongs to Qg then for all n either

u <V
n n

or

u >V
n n

(15.a)

(15.b)

2) The whole set
!
~ of ground-states configurations of model (8)

$~~~ ~) is nonvoid and can be parametrized with one or two hull func-

tions f(x) which are strictly increasing. a) When f(x) is continuous,

a unique function allows
r

one to parametrize the full set ~. b) When

f(x) is “scontinuousp two determinations f+(x) and f-(x) are necessary

Y’to parametrize ~. f+(x) and f-(x) correspond the right continuous and

the left continuous determination of the same disco”,tinuous, strictly

increasing function. In other words, we have:

lim f-(x+~) = f+(x)
6+0
(5>0

and

lim f+(x+ti)= f-(x)
&+o

6<0

(16.a)

(16.b)

C) Wht’rlft(x) is iliSc[JlltillllOUSat X it is also discontinuous
0’

at the poinLs xo+lll+2ka where h aI~(l k arc arbitrary integers. As a

f
result, I.h[’set-of discol]Lillt]iLypoints Of f (x) is d(’nsc un l]lereal

axis.
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d) Functions gf(x) = ft(x)-x are periodic with the peliod 2a of

L(x,Y). i’

F

.-
e) Finally, for any ground-state which belongs to ~, there existb

a phase a and a determination of f: f+ or f- when f is discontinuous

(Jlledetermination is unique when f is continuous) such that

u = f*(n9+a)
n

= nfl+u+gt(nl+a) (17)

Conversely, any corfiguraticn {unj defined by (17) for an arbitrary

~hase and one of the two determinations f+ or f- when

is a ground state in
F fim

1
This hull functlun f(x) obviausly depends on ~.

(un] as defined by [17) is called incommensurate. It

f is di.scontinuouE,

A configuration

describes a crystal

structure of atoms at distance 1 which is modulated by the function g

with the period 2a inconum-nsurate with 1. Let tisnow describe the

$strucLure ofQ2 and ~ for ~; rational.

Theorem 3. Let ~; = ~ be a rutiollal number. (r und s ~lretwo irreducible..—..-. —

integers). Then

1) The set
?
~ is nonvoid and is Lotally ordrred. (i.e. for {ui) #

Y
{vij in ~ then for all n wc have either (15,a) or (l!,,b),)

Y
2) For uny {ul) in ~, wc tlavr for all n

u = u + 2ran+s n
[M-1)

(This grollllfl-sLateis callt’d {:oflllllflllsllrilte, 1[ IIas a unil Cell of R

iitnms with lf’llgth 2rn.)

93) Wh(’11~tl(’ s(’L ~ :S [-onlilluollti,whLclIrecallstllulit (’finbr!

pnrilmrtrii’,rd by Conlinllollsfllnclions (lln(iY))Whrrt-(X is iI continuous

parilnl[”t(!r Wllirll Vilri(!S from -o to +~ (rOl-(’xilml}l(! uo), LIICI1II,,(U) is a



continuous strictly increasing function of a and we have

QY
..

=1A .- (21)

?
4) Wherl ~ is a discontinllous set, it is closed and there exists

5
for each discontinuity a couple of ground-states (vi) and {T:) in ~

*

such that there exists no ground-states in
F

~, {vn] which satisfies for

all n

<V<v
+

v
n 1) n (22!

ThPn, there exists a me. configuration (un) ill
?9.

such that for all n

v- c u <v;
n n (23,a)

and

lim (v~-un) = O (23.b)
Il?+m

lim (un-v~) = O (:?3,C)
I)-)-m

SIICI1ilrollf’i[:l]raliol] (1111) is r.11 11’(! illl ““J(iVallc Cri (* I (~m(*llL;lry ~i S(’Omrn:.l]-

sllrnt ir)ll” , Thi’r(l;llsn(Ixistsm,r. Cllllfigllrntions{Iill]in QI rallr(i

“(lf!lilyo(l (Tf(,l))(,llt;lry II i!; (’(lllllll(ill!:ll ]’ilt ior,” Sll~l] lll:lt jor i]j I II

iill(l

(24.il)

lim (11,,-v~) = (1
I]--
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Y5) The union of ~ and of the set of advanced elementary discom-

mensurations in~~ is ca]]ed Q~. Identically, Lhe union of;
Y J?

with the

set of delayed elementary discoml,]cnsuratjons is calledQ~. Then~~ and

~~ are totally ordered sets (with the definition given in (15)) and we

have

QQ=Q+(JQ-
A?.Q

(2S.a)

(25.b)

This theorem proves that wheIIthe boundary condiLion (11) is satisfied

1
with -— a rational n~lmber,

Za
then the ground-sLaLe is inderd commerl:$uraLe

and satisfies (20). IL can he ohLaillrd by finding thv alJsolu’Len:illimurn

of tile(Jllergyper unit cell wiL]l L]liscondiLioIl (2~). Tllrrr grnt’r~lly

exists s nlillim,](nwdula 2a) (r and s are irrr(luril)l(’illL(’gCI_S) 11(’r:lllsc

oi LIICinvorlanc(>cf’the rllcr~y]~rI-[Initcell un(lrr LIIes cy~’iicII(iI-IIIII-

LaLiolls {U*l

t’x;lml)lek =

also iI[’onL
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similar to (10). They were already ~nown as solitons in continuous

‘]0) Thus, we also pr~ve theremodels for incommensurate structures.
.

existence (under certain conditions> in a discrete model for any com-

mensurability ratio r/s.

Since any twist map (?) corresponds to a variational form (8) for

some choice af L(x,y), Lheze theorems predicts tile exisLence of certain

trajectories in the twist map with particular properties as a corollary

of theorems 1, 2 and 3:

Let UJo be the winding number of ~ (def:ined by (7)) on the invariant

circle p = PO and UJl, its winding number on the invariant circle p = P] ‘

In order to fix the ideas, we

‘1 ‘
there exists a trajectory

al number, this trajectory is

Uecause funcLion f in (17) is

rithrr on ii cnlltinllousUIOSrd

+

assume that w < UJ Then for any UJ < UI ~
o 1“ o-

with winding number w. If UJis an irration-

(]ui-isl -periodic (in an exLendrd seuse

noL rlcccss:,rily continuous) and is dense

loop or on a Ci![lLorset which is puri]met-
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transformation T’sand the contracting sheet W; of Fj s~hich is the set of

points which ronverge to Fj by ~s. Let us note Lhat the point Fi must
,’

be linearly Ilnstablc with respect Lo ~s (that is the Jacobian matrix of

~s at Fj has a real eigrnvalue with modulus larger than ol~e) in ortler LO

be allowed to apply a thee,)-emwhich predirLs L!leexistence of a .~i]aLil]g

shreL W; (Ref. 11). It may ll:Jp])ell,,llL}’>ughFi is ul)stdblewiLh respecL

to Lh6 operator ~ thaL iLs Jacol~ianm.ltrix has aII(’igt’l)valil(’w]Lh
s’

modulds one. Then, a proof for tilecxister)ce of’a (’(lnLIIiuollsdilati[lg or

~orlLt_i]cLirlg sheet is necessary. (W(Ihavr [loty(’L]~(irformecfLhis I)rool”j.

3, Plrt:S1:1111[’C(>llfiglll-:lti(rlsa[ldLl)(’irt’orrcsl~o[ldillgtrajt’rlori~ksin

111(1tf’istma~

I’llt’orcnls], 2 ;III(I3 dtf_illit(’lyIJrovc tt)al ,iltllf~llglilI)cJ(Itl(l,jLions

:)$/a[l = ()rxllil)lLsm;IIIycllilotics[~lllliolis,tll(’grollrltl-s~at(~01 lll(~(lt’i
1

(8) is 11(’v(’i(’llaoli(,h’l);ll(Iv(’ris [I)(Il)(IIi 11(1IIy (oll(liti(~tl(11), iII~(l

(’ss,;ISW(’;Ilr(’:l[ly]Ioilllf’(1

(’I”Illo(l(” I (1)) 111(1(1(’1 (H) ill; l\~

I ) m(~t,lsl,llll(li’[1111i}:llr,llit~lls
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althollgh these two concepts have scmetimcs been confused in the

literature. Let {p.,u ~ be a trajectory of the twist map ?.
1 i)

The
,’.

corresponding configuration [ui} is a solution of the equation a~/aun =

o

& (Un+l)un) +::– (Un,un-l) =0
n n

(26)

By ,1,’finition,the physical stability (called metastabi]ity) of this

Collfguration (Un) means that Lhe second order expansion of the energy

[8) with r[~spcct.to smtillhtomic displacernrnts {6n)

[( 1a2L(’ln+l~UJ + a2L(un’un-1) *2.-&$= ; z ‘--’”-”auz

n a~2
n

n n
(27)

a$,(u,,+l,un)
+2

all,,+1% ‘1’+’6” 1

2
a 1,(11

~q ,, ,,+1’’’,,)*
w2Li = -

II 06 i)ll au,, 1)+1
II 11’11

(i!fl)

2 ,)
H 1,(11 , II ) i)t(ll,,,u

I\+ I Ii + I\- 1)

,, 2
6

2 ““ II
t II 011

n II

O%(I1,,,UJ
+ ?)+

;) II,,OU 11-1
11-1

for,,lof (5,(1)),



For each value of w, Lhis equation can be recursively solved from

Llleknowledge of 60 and 61. Thrn the vector (~n+l,~n) is a’line~r
..

function of the vector (6 bn-l). It is convenient L.oset the new
n’

variables.

~2]#(lJ1),U-1) A,(lln,un-l)

n = --- 6,1 + -– an-.,
n au:

:)lln;lu
n-1

in ortlcrto fi[ldi]]incijr relation

[\

n11+]
- lu2ii(p,,,llr,)) (J‘n \= (~(pi,,u[,)

6 6
1)+] n

(29)

(:)(1,;1)

k(]),,,)),,) ‘ !)

-1

;)- 1,(11 II )/;)ll,,+ ,011,,
1)+ I ‘ II

{
:)21,(11 II)

11+1 ‘ 1)

2
()

‘)( (1
1)

o ‘)

(:10,1))

Fl,,(1)(,,lj)) ,1(11,1,11,,)\J(p-l,II,lql) ‘mmh,,,II,,)



19

,“

(32)

When y is zero, the trajectory {pn,un) is called linearly stable.

Because Lhis

c.n pt-eve(8)

given by Eq.

matrix product does not diverge (or slowly diverges) we

that the zero frequency belongs to Lhe phonon spectrum

(28).

When y is not zero, the Lrajrct.ory {pn,un) is unstab]e with

resprrt LO the initial conditions, Theu, the zero fxeq~lency may not

belong to the phonon spectrum, but if it does belong,the corrc!spo:lfiing

(’i~cnstotrs in the nt’iglll)orhoo(l of tile zero frrquency are nccr:,sarily

rxI)onenlially localized.

As a rrsult. onc sres tlIal Lhc linear stal):

{:,n,l,n} on]y givt~s in[ormat ions on the sprcLrum

II(llldti(]nill111(”f“rrqurncy zrro, hut no illform;lt.

sltil)i ] iLy OK LII[’ ro:”~(’s]~(lll(ling (’t)llfipll]-alio[ls,

IiLy of the triljc~tory

of Lhr small mntioll

ons on the l)hysIcal

IIldc(d,our pr(~vious
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gcnezated from any arbitrary initial condition (no,60) by the product

along this trajectory of the Jacobian matrices (3)), has at.most one

change of sign.
b

Note that this theorem also applies to model (8) when the period-

icity condition (8.b) is dropped. The map is then on the two dimensional

plane and aot on the cylinder. The proof of this theorem is an applica-

tion of the theory of Jacobi

wei] -known corollary of this

one dimensional Schr6edingec

matrices. (See for ex>mple Ref. 13). (A

theory, asserLs that the eigenenergi~s of a

eqllation are in the same order Lh:lnthe

number of nodes of the corres~)onclingeigrnstates. ) Th]: Lheorem have

str~~ightforward applications for predicting Lhp physical ul~stal)ilitvof

the co[lfigur~itionscorresponding to certain trajectories. We have with

rhe same Ilyl)othesisas in theorem 4.

‘ Corollary of thqor$m 4. The configurations curr~lsponding

1) To a prriodic cycle whictl is elliptic;

2) To a pcrio{!ir cyrlc whirl] is llypcrl~olic(or l]ar~l)olic)with

rrflexion; and

3) To irajrrlori~ls (Irnsr011onv t~rS(’V(’rill(Iii’f’(’rf’lltial)lt’tori

(KAtl tori) A’]li(11drr Ilomolopic to xero ;Irt’l)llysi~.nllyul)slable.

(A more c:)IH1)] i r:)~t’d prot]f of L]lis cot,)ll;lry Wil S dlI”r H1.ly giv[~llillR~fi 21,

:1]11){’l)tlixA :11)11 1{. ‘1’llisIIISIllt W;IS ;IISO giv(’11 ill Ilrf. 2,.) For ils proof’)

wc first cx(:nlilleLli(’(’;ls(*of a ~~rrio~lict’ytlcot’(11[1lwisl InnII wiih

pt’riod s. WC* (otl::,i(lf!rtll(’s(I~lllfLII((Ir~fmat l’i(f’sfiks ill~V!l)wtlir’his

C(illlllto l:(])(),ll”).Wllrn 1111*llr’liotlifry( 1[’is rllil)li{.,tll[’m~ltyix

II Ilollol’tll(lgl)ll;ll”

il)sr ;Irolil)(l thr

illfi[lilfIlym;lIJy
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of sign which by throrem 4 proves the first assertion of the corollary.

When the periodic cycle is hyperbolic wi~.h reflexion, by definition,
..

the matrix fi~.Iastwo real.negative eigen~-alues with produc~ 1. If

(nO,&o) is chosen to be an eigenvector cf F the signs of 6ks change
s’

for each consecutive k, because the corrcspnnding e’,genvalue is negative.

The sequence 6ks has then infinitely many changes of sien which proves

the second assertion of the corollary.

When the trajectory {pn,un) is :-otatingand dense on a set of s

diffcrcntiab?e tori (KAM tori) u!hich are llom,~to~~icto zero (which mean-

that they can he shrunk continuously on :h.emanifold of the map), Lhe

configuration {unj can be parametrized with s periodic differentiable

l’un~-tionsgl, g2 ,. g~ with period 2Tt

- gp(k8+a)~]ks+p- (33)

where CY is i]rhitrary ph:se and 0 is the overage of the angle of rotation

of ?s 011rach torus which is ir~t.:]lllll]~jrls~lratewith 2n. By insc’rLing (33)

in (26) ;IndI)y(Iii’fc’rcllti:lt;llgwiLh respect to t]l(’p~Ia$(!Cl,IL corersout.

that

6
ks+p

= g;(kO+a)

is d snllllioll of Eq, (2F) l“or u = C (This

;Itrfl fI-0111 6 011(1 6 I)yii]IrodllctOf .;;~~-oil
o 1

(I(hriviltivr of IJIIy ])crio(lirf\l))CLion ]I:IS A

srIIIIrncc (34) is ;11s0~c’ut’r-

;III m:ltriccs). Sillcr Lhr

most two (’tl,lllKPS of’ sign ])cr
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There often exists KAM tori of the twist map which are noL homo-

topic to zero (they go around the cylinder), then the parametrization!’
..

of the trajectory on this torus takes a form different from (34), which

is (as in (17))

u = n~ + a + g(d+a) (35)
n

where g i.sa differentiable function with period 2a. The corresponding

configuration 1 “-ally stable when

6 = 1 + .q’/.&+a)a) (36)
n

is always positive. We will see in the following section that this

condition is ill~~ys satisfied for such a WI torus.

As a resu]:, the metastablc col!figurations of model (8) are reprr-

srnted hy trajectories which does nol.satisfy the condition of the

col”ollary of theory 4 and LI]UScan I>ceither

110t-

tl :’!2

it

i 11(’

11)(I
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change of sign. As a resl~ltall the observed trajectories which lre

chaotic in the map correspond to physically unstable configurations.
!-

This results confirms the early observation of Shilling and Thomas. (15)

But this numerical experiment does not prove that chaotic configuration

which are physically stable, does not exist. (In fact, we can prove

rigorously their existence in model (1) for A large enough.) It only

suggests that the chaotic metastable configurations are represented by

a set of traj~ctories which have zero measure in the map, and thus are——-

numerically inaccessible because of the limited accuracy of the computer.

By contrast, the KAM tori which are nonhomotopic to zero, (when they

exist) have a finite measure and are shown to correspond to undefectihle

ground-states (see tl,efollowing sec~ion 4). We did not prove this

conjecture but Ref. 16 gives some ot!lerphysical argurnentc which support

this ;ssump~ion,

Cf.li::;,clll{’ntly,Lhe I)unlericalcalculations of the chaotic mrtastable..

coilfigur:~lions, arc no_trelial)lewhen they are simply ger,erated by map

itf’rations. in crder to avoid tllesrm;]]) problems in tht’chaotic region,

(14)
v~rol)t,~illt’ci111(Inl~’tasf.ableronfigurat.iollsby a variation] method.

IIllf’gratingLllcset of rquittions

(37)

will) r[’sll(’cl to tlIr v;lrial)lcs, yields a solutiol) {ui(s)) which, for any

illjLia] (-ollfiqlll’iltloll” {IIi (())}, ([>IIv(Jrgcs L(J a ]imiL {u~~ which is

IIr{cssiltilya m(’t;lst:]l)let’t)IIfigllra! ion. A S])(’c< ii]] (’lloiceof tllc initial

(orl(li[ io[ls Wllicll is givt,llI)ytll(’orrvn1 in Ref. 6-3 or 4, or [llc[~rrm2 in

R(’1, ()-1)(1)111i]Syllllll(’Ll’yIIy]lolllc’sisis ;IISO r(.(]uircd 10 IIavc this
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theorem) yields a limit which is a grol,nd-state. (The solutions shown

in Fig. 1 of Ref. 4 were calculated },ythis way). It seems that the
-. .-

problem of studying the physical stability of the configurations gener-

ated by map iterations, has net }Jeen carefully considered in some of the

recent publications on this SLI~JjeCt(see for example Ref. 18 and 19). In

the second reference
(19)

i.tis p~rticularly obvious, in virtue of the

corollary of theorem 4 that the configurations which are represented by

KAM tori homotopic to zero, can,lotbe ground-states because they are

ph>’sically unstable (See als~ Ref ]6 and 20 For a more detailed

comment of these references).

4. Genera; theorems o? the transition by breakin~of an.,!~ticitv and.-—.-—.—.

the Peierls Nabarro barrier—.

We turn back to the study uf the ground-states which have been done

in sertion 2. Theorem 2 considered two situations for t}leincommen-

surate gtiound-states of model (8). TIIthe first siLuatlon, the hull

function is continuous (and genprally analyticti] in ana]ytlcal models

l)ec~use of tileKAM Llleorern). In lhe second situation, tilehull func-

tion brromes discontinuous on a dense set of points. In model (l),

Lllevariation of Lhe poromrtcr A allows onc to get a Lra[lslLion from

Lll(!first sitllotion to Lhr sero]ldone. WC ca]]ed Lhis transition:

Lrallsitiollby brrokirlg of aIla]yLicity.
(2)

Wr noLcd t]laL Lhis Lr/lnsi-

Lion corr(’spolldsto tl)eoc(llrreliceof a lattice locking oilLtl(’ inconl-

mt’llsllraLr’grouIId-sLatrs L}lirLis illoLllerwords L1~coccurrence of”;]

fil]iLePoierls Nul)urr-o1).lrri[’r(1].jtt’dllrrc~IfLerI)NI)arrier) kh]cllmusL

I)cp;IsseI]LIIrouglIfor trili]sl:~lj[~g [’olllir~uous]yl]~r illcolllmellsurate

groulld-staLr. IIILIIISs(’rLion, w(>drsc.ril)(hsmr O! LIIL)(IX:~C-LrcsulLs

Wilicl)W(I ol)l:+illrcl[)11IIIcIPN l~ilrri(lr aIId tlIr tr:lllsi[ioll by l~r(.aking of
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analyticity, The application of these r~sults to the standard map

allows one to easily obtain bounds for the stochastirity threshold.
!-

Tietus first examine the case for which & is a rational number

and
J
~ is a discontinuous set (theorem 3).

1; is proven that it is impossible to continuously slide the corres-

ponding commensurate ground-states without passing energy barriers. We

also recently proved
(8)

that there necessarily exists another stationary

commensurate configuration Ivn} which just corresponds to the top in

efiergyof the continuous paths corresponding to the translation of the

conunensurate ground-state (by keeping it commensurate) which pass the

lowest possible barrier for the energy per unit cell. The periodic

cycles of the twist map corresponding to the commensurate ground-state

{unj (which are hyperbolic or exceptionally parabolic without reflexion)

and the periodic cycle corrt’spending to this commensurate configuration

{vn] (which are either elliptic, or hyperbolic or pal’aholic klith reflex-

(9)ion in both cases) are those ~’hichhave been considered by Greene

for stlldying the stochasticity t!lreshold of Lhe KM tori in the standar~

map. W!lcn

f
~ is (Iis(ontinuous, we know that there exists elementary

advanced and delayed disccmrn~’nsuraticns. Let {un] be for example an

a(lvanced discc)lllmellsuraliorlaIld {v~) and {VII)the two commensuraLc ground-

staLes with tllc]Iroprrties d~’scribed in (23). The configuration

{vn+s-2ra) is also an advauced disc{~llun(insuration which satisfies the

same conditions (23). IL corr{’sl)ondsto tiledisrollllll~’nsuration{vn)

Lrall:llaledby -s latLic(~ spaclllgsor equiva]c’nLly by a unit cell of the

commerlsurate grolllld-s~ate. 1“() (](~finc(i the Pcierls Nlbarro barrier of

this discolnlllrIls~lr:lLion,W(Icollsi(iera continuous I)atllt(t)= {Wn(t))

such that



I?(o)={w(o)]= (u]n n
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(38a)

and

t(l)= (Wn(l)]= {un~-zra) (38. b)

It joins the two translated configurations the energy difference (which

is proved to be finite)

~(e(t))=sup $l({wn(t)) - O({ua))
t

(39)

is the energy barrier which is passed thlmgh for t-he translation of

this discommensur~; lon along the path ?(t). The PN barrier of the

rlisconr.mensuration {vn) is defined as

‘#vn]) = Tnf E[e(t))
e(t)

(40)

which is the lowest rllrrgy barrier which must he passed for a COIII inuous

tral~slation of the discommcnsuration.

We pointccl in srcLion 2 that. an advanced (li.scollllll(~llsilratio[l is

rrlllr~;;[nL~.[1 ~]y L]le Lrajt.~L(Jry rIf ;lll helt?roc]inic print II whirl] l)[!lOIl~

to the inLcrsertiJn of thr dilatinL shrct W+ of Lhr point 1~~, (which
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It is the sitl]ationwhich occurs in integrable maps, Thus this

theorem proves that if the PN barrier does Rot vanish, the hap cannot be
..

integrable. However, we have not yet completely elucidated the nature

of the intersection of W+ and W- when this pN barrier does not vanish.

We expect that the intersection of W+ and W- is always transverse or in

+
other words that the curve W and W are not tallgen. at Lheir intersec-

tion.

Now, we Lurn back to the case of ttleincommrnsur.~te ground-states.

We can prove several theorems. The two first orlrsdeal with the case

for which there exists in the Lwist map an invariant continuous and

closed curve r
!2

which is nonhomotopic to zero and on which the twist

map is coIljugaLe to a roLation with winding number ~=, In other words,

a trajecLorv {pn,un) on this curve l-gcan be paramet rized by a continuous

hull funclion fk(:,)SUCIILhaL for u1l n

u = fk(n~+a)
n

(41)

wiL]] f (x)-x ]Jrriudic
k

~’iLl) ]Jcri[)d2a (~ is SO In(- ;Irl)i1r:)rylJllil SP) then

w(I I)ruvr(l1II(’f[)l1owi]Igl.llrorcrn
(4,8)

Throrrm ~) I,ctus assllmc 111(’ cxistrll(’(} of ;111 illvdriallL rolltinllolls Cllrvr

Q.
[llm~hcr ttll’11lllissrl I’y

28’
is i~lt~lllic:llLO thr s(*Lof L)’il.j(’(”toriPS

I“r])r(’srlll illg ttl[’ grollll[l-stdl(’ of
f 2’

(1’lli S t tl(’orrmilIRn :1],111irs When

I);lrli[lllsrly,tllis [llrr1’1(allhr ilKAM torl]s wit]l1111irrnti(}l~ul
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probability 1 can be approached by s,?quences of KAM Lori with winding

nllmbers flj/2asuch that Ii goes to 1 either with ~i > 1 or gi < 9. Let
,.

us call these tori “Lrue’lKAM tori. Most KAM tori are “true”. Then, we

VP the theorem.

,.,
,,~,rem 7

$
When t}leset of incommensurate ground-sLate ~ is rcpre-..—

~;?ntedby a “true” KAN torus rl,~ then the irluonllll~’’l:;llratrgroulld-staLes

of
Y 1

are ulldefectible (llydefiniLlon a ground-state is cal]ed und~’ferL-

[

ible, when, apart a phase shift, it is the only nlrttjstableconfigura-

tion of the syst.clnwiLh t]lrsame I)ollntlary conditions (11)).

]n the situations, considered by lhcorem 6 and 7, the PN harrier

which r{~rresponds Lo Lhe LranslJtioll of tl!(’incollll’’t’nsllr:ltesLrurturc is

~er~ . ‘l’hi>nLIIcga]IillL]lrl)]loIl~[ispc’cLrum of L’IriIIC’(~llllll(’IISlII-iIL(iground-

state {11) given
n

smi)]](’sL ])hO1loll

(!o(Is1101inl]]lya

Lll(’[)r(’mk’hi[’11ll:IvfI;I[Illit<’
(8)

(~jml~li[;ll(’[iproof,

Tllrorrm 8 14(’1{11,, ) 1)(’ 1111 i[l~’(lllllllt’ llslll’; lt(’ grIjlllltl-sl~lt(’ 01 111[)(1(’1 (8) .

l,rtus :ISSIIIWlI1:ILltIrga]I iII 11.(IfI:If*IIcy of tlIc sm:Ill nloliollKq. (213)

!I(IslrirLly po:;ilivr. Th(’ll,111(’11~111 fllllrlion 1 11(’s[rillillg lllf’ ill,~Jlll-

nlI’llsllr(lLr gi(IllllI1-s\:l[f’ is flis(r(’lf’ (sl’{’ Illf’orf’nl 2) . I II (1(11 (’t- Wol’(ls ,

it(x) :111 1)11 writ 1(’11 :I!; ;I SIIm (II str,l~ 11111(1 iol~s.
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Y-(0) = O). Then, the Lyapounov exponent y given by (32) for Lhis

incommensurate ground-state is strictly positive. !.
. .“

For reasonably difiercntiah]e models 8, we conjectured in Ref. (6-a)

that the hull function f of an

either

1) ~il~solutelyroll~inuolis

(’vcrywllere

x,
f“(xl)- f(xo) = .fx’ f’(~)d[,

o

or 2) sillglllarcolllillllolls(f(x) is

;IlmtJst{Iverywll(’t”c)or 3) dist]l’lc

rlc(]l]lnle[~,sllratc ground-sL.aLr sl~ouldbe

hat is f(x) is (liff{>rf~r~ti;il~l(,almosL

writ tcl] h’itll llItI

!4(’ II;!v(’ [lot

It(’f’. 4 t 11;11 1110(1(1

is (’ill)(’),Illdlyl

])1’()()f”s wi t II nl(~i-(l

11])])1,1 lJ(JIIII~lS I’t)r

(4:))

L’OIIt illuousW] LII d zero (Icrivi]t ivc

f(X) is ~liscollLillll(]l]silll(l Cflll hC

f“orm (42)).

l’i~[ll”ollsly]JI’OV(’11ll]iscoll,i(’tll]rt’1)111K’(Illdvt’ slIok’11i11

(1) [’xllillilssi[ll:lliollsfor Wllitllthe 111111I“llll(tiolli’

[’;IIor dis(]’(’1[’.‘1’11(1l(~ll(JwiIlgst”{’(ioll5 I“PIJOI”(SLIIPs(’

(Iflt;liis Wllicllyi(’l(lsill(i(lf’nlly;1s(~ri(’sof (’x;l(.t

tlI(ItI“OIISiLion I)y1)11.:lkill~(JI;Ill;lly[i[’ity[Irt’~llliv:l-

11~ Illlml)rr

this KAN

flll)(’tion is
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differentiable. Convcrsrly, when A becomes large rnough the intllitive

image of the problrm, suggests Lhat the atoms locate in the;bottoms of

the periodic potrntial and thus that.the f~)nction f I)ecomes discrete,

This hull function satisfies the fllnctional equation

F(x) = L(X+~) + f(x-~) - 2f(x) = ~- sin(~ f(x)) (44)

which is ohtoincd by inserting (17) in (21). fl(’~i~us~of t]lcl)r]’,o[li(’iLy

]Jroperty of ttlismodel we can rrslrict our study LO tllccasr O ~ 1 ~ 2a,

Since f(x) is mollolonollsincrrtisin.git com[’sOl]t Ll]i)L for i]fly x

f(x+Q-2i1) < f(x) < f(x+l)

Tllcs[jill~l(lllillitics(45) in (44) yields

IF(X)I < 2U

AS .I I.(i Slli ( , Wh(’11

(45,;1)

(4!).1))

(/,(,)

Eq, (/I/1) ;IIIIIil)(t(lil,l]iLy (~!).1~)::lI(IwsltluttlIr111111l’IIIIitiol)x+~(x) =

((X) (’:)IIIIIJIt;lk[’~lllyV:llllr(211+1)/:1wl~rrrn is illl ill([lgrr, colls(’(111(’l)t ly

llilV(’ 1)(’1’11 (’ill(”lll~tt’il Ily (;l’1’f’111’
(9)

:111~1 wlli[ll i s ill [Jilt” Illli lN
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A
Ac # 0.9716 x ~a— = Sup AC(Q)

#2 !2
(47)

In fact this bound ran hr improved by on]y coI)sL’!~)ringthe positivity of

the ~luadrutic form (27)

(48)

for any ground st~tc {un}. Assliming that the hull f(lnrtiorlf(x) be

rol)linuoust it is possi])le Lo r]]oosc Lhr phasr (Ysuc]lthat

11 = f(a) = a
()

(40)

II
1
‘x (50mil)

‘1’11(’h(iltiollill”)r h(l, (2) yi(’1(1~

An
II
-1

~ 2;I-u , u2 _-2x-/l+ ~,1!:iIl(~ x) , U-2 = 20 - II
2’

2
~..2.A=2

2i-1
(51.0)
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(51.b)

,.

y=z An’
- 27 ‘Os ~ (2X + -~ sin ~ x) (51.C)

First, we consider the minor of order 1, Al = A. When it is rlrgative,

the qllatlk-oticform (48) c:innotbc positive. Fcr

(52)

A is I)rgi]tive and Lherc exist no KAM tori, Second, when A < 4a2/n2 we

rol~sidrr Lhc minor of order 2

A2 =
A -1 I=AX-I
-1 x

22
wll~’11A ~ 4~J/n , It is :;m:lllcr-l’Or,IrlyX ttlilll

(53!1))

x -1 L)
-1 A -1

I

~~ X(AX-2)
() -1 x

(!)4iFl)
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wilich is negative for any x when

(54.b)

This inrqllality improves the upper bounds (46), (52) and (53a) for

the storhasticity t.hrrshold?c. By considering higher order minors of

thr qllodratic form, W( obtain I)cttcrhounds for A For example, we
c“

considered the order five:

A5 =

Y -1 0 0 0
-1 x -1 0 0

0 -1 A -1 0
0 0 -1 x -1

I 00(-)-l Y

ihlr, W(IoIllytll(~{k[,(lIlllm[’rit:lliy (11(’sign of” (ANY-2Y-A) for ()c x ~:“n

with A, X, Y givr[)I)y (51), ‘I’1l(’11,k’(’f’ollrl(ltlI:ItI“or

(5:).1))
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sequence of minors An which follows Al, A., A3, (Ah) and A5 converge to
L

the exact value of Ac but we have not checked numerically this assertiori.,’

I,etus turn back to the sLIIdy of the functional Eq. (44). We

reproduce here, for the model (1) the proof of Ref. 4 (which we hope mGre

clear) which shows that for A large enough the hu~l function f becomes

discrete. When (46) is satisfied, we have

~ 4~
sin ~ f(X) (56)

- An

which implies that for any x thrre exists an inlrgvr IIsuch that

-fotna<f(x)<f+na (57il)
. — o

with

(()z 4,;2’
~ Arl’sill Ati (!)”?,1))

Wr IlowWrilr 111:11 tt)r tli;lgoll;ll1(.rms01”tlI(Itlllil~ll-lli(’I(;rnl(4H) is

~lositivf” wllitllyi(’ltls~lllf~[ll(’rill(’flllaliLy for”illI x

4a2
~ (’()!4: l(x)

Anx

0( 11(’rwi sf’ , ill(’{111:11 ity (’~~.,1)[“(IIII~~~1~1imlllit’::IJY ~l:~l[ltL (37.l)~

(:)/’!)

(’!’) .;1)
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(59.b)

,.

Inequalities (58) and (57,a) are incompa~lble for n odd, thus the

integer n which appears in (57a) must be even. As a result, when (59,b)

is s:itisfied, we obtain for all x

()
2

n
Cos ~

4a2
f(x) > Cos: i. = 1 - ~— > 0 (59.C)

NOW , WP c,ln iil>~)ly theorem (8) I_or])roviIl~that funcLion f is discrete

l~y rllrcking LhaL (59.c) imlj]icsttlattt]rg:lpof tlIcplIonon sll(’ctrumis

t illllollS parL Fr(x

II{JIII]If’rio(li(iIll(l

l:(,(x)is ]Irr

x 10 (X+1) oj”111(’

I(x-f) = i + g(x)

llt,li(~(li~lllll\lit)Il

of ]:(x) in (44) is a ((jlisl;lntby i~rovil)gL!I:It 11 is

moIIoloIlous illcr(’:lsirlg.

otlirl)(IL;IIIsrit is [IIC v;lri;ltiol]lIc.(x+l) - Ilr(x) Iron]

[[llltillllolls]I;II’1ol tlIt!~(’rio(li[”lul)(’Liol) II(x)= l“(x)-

- ~(x-1), (N(J1(’Il(:k’1’’+f’t(Ilill LI1l’ t(~l~iill’l{)lls]);II’L[)1:1

is 1101 11(’(f’”~ .,,,,llilyIJrrioflic).
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ground states for J!/2a= 441/997 (which is practically an irrational

number) and for A = 0.167, A = 0.20 and A= 0.212. (These ground-states
,.

have not been calculated by iterating the standard map because, as we

krlow , it is an unstable process for A > AC(l) but by using the gradient

method described by Eq. (37)).

6, Final Remarks on the devil’s staircase and the order without. ..- -—. ——

periodic%

The above theorems have an application for the theory of the

devil’s staircase which wc briefly describe lIOW.

Let us coll~~dermodel (C) to which WP add a tensile force p (or

ch[’miralpotential)

$p({uil) ‘z ‘r’(ui+~!ui) - P“(ui+~-ui)]
i

(6o)

,N
III(Q)= Ilm 2 L(lll+],ui)

NunN i=l

(61)
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1) the curve fl(p)is monotonous increasing and is continuous.

2) for each rational & ❑ ~, J?(p) is constant on a finite interval
!’

f

,.
6 if and only if the corresponding set ~ (described in theorem 3) is

k
discontinuous.

In general,
f

when the twist map is not integrable, ~ is not contin-

uous for all rationals 1. As a result fl(p)has a constant step at each

rational ~—.
2a

This curve is called a devil’s staircase.
(25)

In this book, B.

MandelbLot also shows other physical examples which involves such

pathological curves. On the basis of solid physical arguments, we ccn-

jcctured(2J3) that this curve l(p) is a complete devil’s staircase

for i?l< 9 < 1 when for all irrational E in this interval,
2 2a

the set

Y
are riisco[ltinuous. (By definition, a devil’s staircase is called

~rnpletc(2) when it is entirely composed of steps, or equivalently

wllcnl(p) has a zero derivative almost everywhere, or equivalently

wl)clltileSticlLjes measure J?(p)tlasno absolutely continuous part), we

also coIljc:Lurrd tl~atit becomes IIlcornplete(that is its derivative

i.
hrrome!s iinite on a finite measure seL) w]len for some ~ Irratlona]

(wllicllnave finite mcasult’) Lhc sets
f
~ arc ~e])rcscnted by KA!I tori.

(l,cIl]sm(’nlioilLhat our Lhrt]rykIoulribecome rigorous, if a Ilniform

I)oull(!()[tile[Ixl)oll(I[lli;~lilll{’l:4rLiol)sbct Wer I) (]lr (Iiscollllllc’llsllratiolls

rollldI)eol)lai[lr(]).AIlyw:Iy , wc ~ill) rxhihit exact models (which

r:lfl lIr ])rovt’(! L()

illR(if.2, 3 illl(i

L() iIII itr(’v(hrsil)

l)t’l~nvior.But ,

mrllts .

CS) in wllirh o romplctc devil’s staircase
(7)

(Ixisl;)nd:llsorxl~lir;Lly ciilru]ated. As we explained

16 0 ~onlprtc (Irvil’s st:lirc;~;rl~llysicnllytort-esl)ouds

r l~lil(01)1ir]llolls tr~lllsformation wllirh is a quite Ilrlusua].—

rl(lr(’d :;imi.liirfr:ltllrt~sI)c(’11ol}svrvrd irlc(’rLtiincxpcri-
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It has also been experimentally observed str~.,-’ureswhich are

neither periodic or quasi-periodic (incommensurate:). Are they chaotic?
. ,-

We generalized some aspects of this theory on the twist maps, to all

structures in any dimensions which are obtai!led from the minimization

of an energy (i.e. a variational form). We introduced an abstract dyna-

mical system in which the usual time group is repla~ed by the transla-

tion group of the space in which the structure is imbedded. Usir,g this

representation, we proved that there alk~s exists a “minimal invariant-.. — — —.

closed set” (by definition, it does not contain any smaller closed set

Invariant under the action of the group) which correspond to a ground-

state. Translated in physical terms, this property implies the existence

of ground states with a new kind of long i~angeorder which could be

neither periodic nor inconllll[’rlsllrate.We called this new kind of long

range order “weak periodicity”. IL also coircspond physically to a

“local order at all scales”. In Ref. (16), we briefly describe this

Llleorybut with some more dct:liIS than here. P;irticularly, surl)risillg

examl)lesof “1111(1~’ci{l:ll)l(’slrllrlllr[’s”ol)tailledby tiling Lhe plarleare

~ivrn, prove LllatSUC-]]sLr:lll~(’sLrllcLllresdoes t~xist in theoretical

1110(1(!1s . t’]or_eovr’r LIIcy II;JV(’ no (’lllropy. I,eLus emphasize tllilt our iJss[>r-

(27)
tirlrls arc llnt ill I’fIIIt I-:i[iic’t ion witi] L]Iose of Rllclle on LIIe rxisteIlcc

o s “lIIr]III]f,IIL groll[lll-s(;llr’” ;I] LIIOII} <II Ltlr’y scefn Lo (I isagree. lIl(ict’d i’or

1> itll(’1 I(I, “L{ II-!III1(’IIL” nl[’ails Ilolll)(’r-iotlic;411(I“[ltjll-qu~isi-~)el”iodir’i. WiLll

Lhis {1(’1’illilioll,W(I agrr’cWith Ilisass(’rliol]011 L]lrc’xisLencc [)1”Illrbll-

]enl grollIld-sLaL~’.I[oti[’vrr~Jllr(1(’1illit]orlof Lllrl]lllcnLis mol”r r(’slrlc-

Livr lJis(iIIIs(i w(’ l’r(l:lir(’LI1oL(IlrsLrll~’lureIli]sH I“illi[c ellLropy.

AI IIIOIIgh, W(’ I):lv(’ 110 ])l’( )()1 , W[, 11{’1 i(’v(’ Llldt (’x((’]11 ill(’x((’1)(ionfil

mod(’ls wiLh ~1(’(’i~!t’llt:ll(l(’R(’ll(’r:ICy) t!I(’ gr[lllll(l-s(ilt(’ OJ Inost IIIO{IC’IS



obtained by minimizing a free energy has no entropy although it can be

neither periodic nor quasi-periodic. It is necessarily “weakly periodic”
,.

(but this property is still quite physically imprecise). Of course, we

do Ilotexclude defectible ground-states for which there may exist many

other m~tastable configurations. Although Lhey have more energy than

the ground-state these configurations should play an important role for

the thermodynarnical properties of the structure.
(16)
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Fi~ure Captions.—

Fig. 1. Map of the transformation ~ in (6)
of the initial points M, pl~tted on

,.

.-
showing the trajectories
the figures for A = 0.15

Fig. la, A= 0-.2Fig. ~.~ and A ❑ 0.25 Fig. l.c. For each
initial M. , about 1000 points of t’e trajectory P(ll.) O < n ~
1000 havelbeen plotted, For A = L15, most traje~to~ies Tie on
smooth closed curves (KAM tori) except the trajectory generated
by M. which maps a chaotic cloud of points in a narrow area.
For ~ = 0.2 this chaotic area becomes much wider while for
A= 0,25 this chaotic ~rea fills most of the map except in
some isolated islands.

Fig. 2. Scheme of an advanced elementary discomrnensuration {u.} for
J2/2a = 1/5. u. is plotted as a function of i. The p~ase
shift, 2a/5, o~curs in the region 14 < i < 15. Far from this
region Lhe configuration is comrnensuraLe,

Fig. 3. Schrrne showing tileinitial points of the trajectories in Lhe
twist map wl]ich rrurescnt the ~ommensurntc Rround-states for
l/2a = 2/3: F1 ❑ T(F ), F ❑ T(F1), F = T(F2). (These
points form a l~rriodlf cycle with prri?d 3). Tile hrginning
of Lllrdilatin~ shecL of Fl, F2 and F3 are also rrl)resrntrd
wilt] oIIly onc itlLcrsr(’tion poiIlt one with each other. The
arrc)w indiratrs tile t!i rrction of’ the motion of a point Of
th(, S])CICLby the twist map. ‘f’husit indi(.ates if the sheet
is dil;lLillg

U);();tUc:::;~h(3T
he tr-ajrcl.oricfi gcl]erated by

LIIP l)o.it~ts l~h

;,~~~ (Ii s((,IIIII,(Ilsl,lu?J(JII+

rorrcsllo[ld LO il ~y~nc(,~2~lemcn-
,, ‘!’fl(JS(’ g(*[lc~iiL~”d hy ]1(1 , h

uf~rrrsl]ofl(ls Lo flc’]tiyo~l (’lrm(’llLary (lis(-(jllllllf’llsur~ !io;s’.’”(]
d
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